Math 434 Assignment 1

Due March 15

Assignments will be collected in class.

- 1. We defined the ordered pair (a, b) as $\{\{a\}, \{a, b\}\}$.
 - (a) Prove, using the axioms of ZFC and stating which you are using, that (a, b) exists.
 - (b) Prove that (a, b) = (c, d) if and only if a = c and b = d.
- 2. We defined addition on the natural numbers. Using this definition, prove:
 - (a) for all $a \in \mathbb{N}$, 0 + a = a + 0 = a.
 - (b) for all $a, b \in \mathbb{N}$, a + b = b + a.
- 3. Formally define the multiplication function $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and prove that it is:
 - (a) a set,
 - (b) a function,
 - (c) has domain $\mathbb{N} \times \mathbb{N}$.
- 4. Prove that if (A, \leq) is a well-order, and $B \subseteq A$, then (B, \leq) is also a well-order.
- 5. Let (A, \leq_A) and (B, \leq_B) be linear orders. Define the lexicographic order \leq_{lex} on $A \times B$ as follows:

 $(a,b) \leq_{lex} (a',b') \iff a <_A a', \text{ or } a = a' \text{ and } b \leq_B b'.$

Prove:

- (a) \leq_{lex} is a linear order.
- (b) if A and B are well-orders, then so is \leq_{lex} .
- 6. Use Lemma 2.6 (and the ideas from its proof) to prove Corollary 2.7 and Lemma 2.8:
 - (a) Prove that well-orders are rigid: If (A, \leq) is a well-order and $f: A \to A$ is an isomorphism, then f is the identity.
 - (b) Prove that a well-order is not isomorphic to any proper initial segment of itself.